EconPapers    
Economics at your fingertips  
 

Assessment of Uncertainty in High Frequency Data: The Observed Asymptotic Variance

Per A. Mykland and Lan Zhang

Econometrica, 2017, vol. 85, 197-231

Abstract: The availability of high frequency financial data has generated a series of estimators based on intra‐day data, improving the quality of large areas of financial econometrics. However, estimating the standard error of these estimators is often challenging. The root of the problem is that traditionally, standard errors rely on estimating a theoretically derived asymptotic variance, and often this asymptotic variance involves substantially more complex quantities than the original parameter to be estimated. Standard errors are important: they are used to assess the precision of estimators in the form of confidence intervals, to create “feasible statistics” for testing, to build forecasting models based on, say, daily estimates, and also to optimize the tuning parameters. The contribution of this paper is to provide an alternative and general solution to this problem, which we call Observed Asymptotic Variance. It is a general nonparametric method for assessing asymptotic variance (AVAR). It provides consistent estimators of AVAR for a broad class of integrated parameters Θ = ∫ θ t dt, where the spot parameter process θ can be a general semimartingale, with continuous and jump components. The observed AVAR is implemented with the help of a two‐scales method. Its construction works well in the presence of microstructure noise, and when the observation times are irregular or asynchronous in the multivariate case. The methodology is valid for a wide variety of estimators, including the standard ones for variance and covariance, and also for more complex estimators, such as, of leverage effects, high frequency betas, and semivariance.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:85:y:2017:i::p:197-231

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido W. Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:emetrp:v:85:y:2017:i::p:197-231