EconPapers    
Economics at your fingertips  
 

Robustness and Separation in Multidimensional Screening

Gabriel Carroll

Econometrica, 2017, vol. 85, 453-488

Abstract: A principal wishes to screen an agent along several dimensions of private information simultaneously. The agent has quasilinear preferences that are additively separable across the various components. We consider a robust version of the principal's problem, in which she knows the marginal distribution of each component of the agent's type, but does not know the joint distribution. Any mechanism is evaluated by its worst‐case expected profit, over all joint distributions consistent with the known marginals. We show that the optimum for the principal is simply to screen along each component separately. This result does not require any assumptions (such as single crossing) on the structure of preferences within each component. The proof technique involves a generalization of the concept of virtual values to arbitrary screening problems. Sample applications include monopoly pricing and a stylized dynamic taxation model.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (84)

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:85:y:2017:i::p:453-488

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido W. Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:emetrp:v:85:y:2017:i::p:453-488