Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap
Christoph Rothe
Econometrica, 2017, vol. 85, 645-660
Abstract:
Limited overlap between the covariate distributions of groups with different treatment assignments does not only make estimates of average treatment effects rather imprecise, but can also lead to substantially distorted confidence intervals. This paper argues that this is because the coverage error of traditional confidence intervals is driven by the number of observations in the areas of limited overlap. Some of these “local sample sizes” can be very small in applications, up to the point that distributional approximations derived from classical asymptotic theory become unreliable. Building on this observation, this paper constructs confidence intervals based on classical approaches to small sample inference. The approach is easy to implement, and has superior theoretical and practical properties relative to standard methods in empirically relevant settings.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/
Related works:
Working Paper: Robust Confidence Intervals for Average Treatment Effects under Limited Overlap (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:85:y:2017:i::p:645-660
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().