Rushes in Large Timing Games
Axel Anderson,
Lones Smith and
Andreas Park
Econometrica, 2017, vol. 85, 871-913
Abstract:
We develop a continuum player timing game that subsumes standard wars of attrition and pre‐emption games, and introduces a new rushes phenomenon. Payoffs are continuous and single‐peaked functions of the stopping time and stopping quantile. We show that if payoffs are hump‐shaped in the quantile, then a sudden “rush” of players stops in any Nash or subgame perfect equilibrium. Fear relaxes the first mover advantage in pre‐emption games, asking that the least quantile beat the average; greed relaxes the last mover advantage in wars of attrition, asking just that the last quantile payoff exceed the average. With greed, play is inefficiently late: an accelerating war of attrition starting at optimal time, followed by a rush. With fear, play is inefficiently early: a slowing pre‐emption game, ending at the optimal time, preceded by a rush. The theory predicts the length, duration, and intensity of stopping, and the size and timing of rushes, and offers insights for many common timing games.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:85:y:2017:i::p:871-913
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().