Power in High‐Dimensional Testing Problems
Anders Kock and
David Preinerstorfer
Econometrica, 2019, vol. 87, issue 3, 1055-1069
Abstract:
Fan, Liao, and Yao (2015) recently introduced a remarkable method for increasing the asymptotic power of tests in high‐dimensional testing problems. If applicable to a given test, their power enhancement principle leads to an improved test that has the same asymptotic size, has uniformly non‐inferior asymptotic power, and is consistent against a strictly broader range of alternatives than the initially given test. We study under which conditions this method can be applied and show the following: In asymptotic regimes where the dimensionality of the parameter space is fixed as sample size increases, there often exist tests that cannot be further improved with the power enhancement principle. However, when the dimensionality of the parameter space increases sufficiently slowly with sample size and a marginal local asymptotic normality (LAN) condition is satisfied, every test with asymptotic size smaller than 1 can be improved with the power enhancement principle. While the marginal LAN condition alone does not allow one to extend the latter statement to all rates at which the dimensionality increases with sample size, we give sufficient conditions under which this is the case.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.3982/ECTA15844
Related works:
Working Paper: Power in High-dimensional testing Problems (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:87:y:2019:i:3:p:1055-1069
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().