Realized Semicovariances
Tim Bollerslev,
Jia Li,
Andrew Patton and
Rogier Quaedvlieg
Econometrica, 2020, vol. 88, issue 4, 1515-1551
Abstract:
We propose a decomposition of the realized covariance matrix into components based on the signs of the underlying high‐frequency returns, and we derive the asymptotic properties of the resulting realized semicovariance measures as the sampling interval goes to zero. The first‐order asymptotic results highlight how the same‐sign and mixed‐sign components load differently on economic information related to stochastic correlation and jumps. The second‐order asymptotic results reveal the structure underlying the same‐sign semicovariances, as manifested in the form of co‐drifting and dynamic “leverage” effects. In line with this anatomy, we use data on a large cross‐section of individual stocks to empirically document distinct dynamic dependencies in the different realized semicovariance components. We show that the accuracy of portfolio return variance forecasts may be significantly improved by exploiting the information in realized semicovariances.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
https://doi.org/10.3982/ECTA17056
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:88:y:2020:i:4:p:1515-1551
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().