Bootstrap With Cluster‐Dependence in Two or More Dimensions
Konrad Menzel
Econometrica, 2021, vol. 89, issue 5, 2143-2188
Abstract:
We propose a bootstrap procedure for data that may exhibit cluster‐dependence in two or more dimensions. The asymptotic distribution of the sample mean or other statistics may be non‐Gaussian if observations are dependent but uncorrelated within clusters. We show that there exists no procedure for estimating the limiting distribution of the sample mean under two‐way clustering that achieves uniform consistency. However, we propose bootstrap procedures that achieve adaptivity with respect to different uniformity criteria. Important cases and extensions discussed in the paper include regression inference, U‐ and V‐statistics, subgraph counts for network data, and non‐exhaustive samples of matched data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
https://doi.org/10.3982/ECTA15383
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:89:y:2021:i:5:p:2143-2188
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().