Testing for Differences in Stochastic Network Structure
Eric Auerbach
Econometrica, 2022, vol. 90, issue 3, 1205-1223
Abstract:
How can one determine whether a treatment, such as the introduction of a social program or trade shock, alters agents' incentives to form links in a network? This paper proposes analogs of a two‐sample Kolmogorov–Smirnov test, widely used in the literature to test the null hypothesis of no treatment effects, for network data. It first specifies a testing problem in which the null hypothesis is that two networks are drawn from the same random graph model. It then describes two randomization tests based on the magnitude of the difference between the networks' adjacency matrices as measured by the 2 → 2 and ∞ → 1 operator norms. Power properties of the tests are examined analytically, in simulation, and through two real‐world applications. A key finding is that the test based on the ∞ → 1 norm can be much more powerful for the kinds of sparse and degree‐heterogeneous networks common in economics.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.3982/ECTA18093
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:90:y:2022:i:3:p:1205-1223
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().