Learning From Reviews: The Selection Effect and the Speed of Learning
Daron Acemoglu,
Ali Makhdoumi,
Azarakhsh Malekian and
Asuman Ozdaglar
Econometrica, 2022, vol. 90, issue 6, 2857-2899
Abstract:
This paper develops a model of Bayesian learning from online reviews and investigates the conditions for learning the quality of a product and the speed of learning under different rating systems. A rating system provides information about reviews left by previous customers. observe the ratings of a product and decide whether to purchase and review it. We study learning dynamics under two classes of rating systems: full history, where customers see the full history of reviews, and summary statistics, where the platform reports some summary statistics of past reviews. In both cases, learning dynamics are complicated by a selection effect—the types of users who purchase the good, and thus their overall satisfaction and reviews depend on the information available at the time of purchase. We provide conditions for complete learning and characterize and compare its speed under full history and summary statistics. We also show that providing more information does not always lead to faster learning, but strictly finer rating systems do.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.3982/ECTA15847
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:90:y:2022:i:6:p:2857-2899
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().