Spatial Correlation Robust Inference
Ulrich K. Müller and
Mark W. Watson
Econometrica, 2022, vol. 90, issue 6, 2901-2935
Abstract:
We propose a method for constructing confidence intervals that account for many forms of spatial correlation. The interval has the familiar “estimator plus and minus a standard error times a critical value” form, but we propose new methods for constructing the standard error and the critical value. The standard error is constructed using population principal components from a given “worst‐case” spatial correlation model. The critical value is chosen to ensure coverage in a benchmark parametric model for the spatial correlations. The method is shown to control coverage in finite sample Gaussian settings in a restricted but nonparametric class of models and in large samples whenever the spatial correlation is weak, that is, with average pairwise correlations that vanish as the sample size gets large. We also provide results on the efficiency of the method.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.3982/ECTA19465
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:90:y:2022:i:6:p:2901-2935
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().