EconPapers    
Economics at your fingertips  
 

Spatial Correlation Robust Inference

Ulrich K. Müller and Mark W. Watson

Econometrica, 2022, vol. 90, issue 6, 2901-2935

Abstract: We propose a method for constructing confidence intervals that account for many forms of spatial correlation. The interval has the familiar “estimator plus and minus a standard error times a critical value” form, but we propose new methods for constructing the standard error and the critical value. The standard error is constructed using population principal components from a given “worst‐case” spatial correlation model. The critical value is chosen to ensure coverage in a benchmark parametric model for the spatial correlations. The method is shown to control coverage in finite sample Gaussian settings in a restricted but nonparametric class of models and in large samples whenever the spatial correlation is weak, that is, with average pairwise correlations that vanish as the sample size gets large. We also provide results on the efficiency of the method.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.3982/ECTA19465

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:90:y:2022:i:6:p:2901-2935

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido W. Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:emetrp:v:90:y:2022:i:6:p:2901-2935