Graphon Games: A Statistical Framework for Network Games and Interventions
Francesca Parise and
Asuman Ozdaglar
Econometrica, 2023, vol. 91, issue 1, 191-225
Abstract:
In this paper, we present a unifying framework for analyzing equilibria and designing interventions for large network games sampled from a stochastic network formation process represented by a graphon. To this end, we introduce a new class of infinite population games, termed graphon games, in which a continuum of heterogeneous agents interact according to a graphon, and we show that equilibria of graphon games can be used to approximate equilibria of large network games sampled from the graphon. This suggests a new approach for design of interventions and parameter inference based on the limiting infinite population graphon game. We show that, under some regularity assumptions, such approach enables the design of asymptotically optimal interventions via the solution of an optimization problem with much lower dimension than the one based on the entire network structure. We illustrate our framework on a synthetic data set and show that the graphon intervention can be computed efficiently and based solely on aggregated relational data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.3982/ECTA17564
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:91:y:2023:i:1:p:191-225
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().