Estimation of graphical models using the L1,2 norm
Khai Xiang Chiong and
Hyungsik Moon ()
Econometrics Journal, 2018, vol. 21, issue 3, 247-263
Abstract:
Gaussian graphical models are recently used in economics to obtain networks of dependence among agents. A widely used estimator is the graphical least absolute shrinkage and selection operator (GLASSO), which amounts to a maximum likelihood estimation regularized using the L1,1 matrix norm on the precision matrix Ω. The L1,1 norm is a LASSO penalty that controls for sparsity, or the number of zeros in Ω. We propose a new estimator called structured GLASSO (SGLASSO) that uses the L1,2 mixed norm. The use of the L1,2 penalty controls for the structure of the sparsity in Ω. We show that when the network size is fixed, SGLASSO is asymptotically equivalent to an infeasible GLASSO problem which prioritizes the sparsity‐recovery of high‐degree nodes. Monte Carlo simulation shows that SGLASSO outperforms GLASSO in terms of estimating the overall precision matrix and in terms of estimating the structure of the graphical model. In an empirical illustration using a classic firms' investment data set, we obtain a network of firms' dependence that exhibits the core–periphery structure, with General Motors, General Electric and US Steel forming the core group of firms.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/ectj.12104
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emjrnl:v:21:y:2018:i:3:p:247-263
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1368-423X
Access Statistics for this article
Econometrics Journal is currently edited by Jaap Abbring, Victor Chernozhukov, Michael Jansson and Dennis Kristensen
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().