EconPapers    
Economics at your fingertips  
 

Hallucination‐Free? Assessing the Reliability of Leading AI Legal Research Tools

Varun Magesh, Faiz Surani, Matthew Dahl, Mirac Suzgun, Christopher D. Manning and Daniel E. Ho

Journal of Empirical Legal Studies, 2025, vol. 22, issue 2, 216-242

Abstract: Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. However, the large language models used in these tools are prone to “hallucinate,” or make up false information, making their use risky in high‐stakes domains. Recently, certain legal research providers have touted methods such as retrieval‐augmented generation (RAG) as “eliminating” or “avoid[ing]” hallucinations, or guaranteeing “hallucination‐free” legal citations. Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI‐driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general‐purpose chatbots (GPT‐4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI‐Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG‐based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jels.12413

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:empleg:v:22:y:2025:i:2:p:216-242

Access Statistics for this article

More articles in Journal of Empirical Legal Studies from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-05-10
Handle: RePEc:wly:empleg:v:22:y:2025:i:2:p:216-242