Space‐time areal mixture model: relabeling algorithm and model selection issues
M. M. Hossain,
A. B. Lawson,
B. Cai,
J. Choi,
John Liu () and
R. S. Kirby
Environmetrics, 2014, vol. 25, issue 2, 84-96
Abstract:
With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space‐time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright © 2014 John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:25:y:2014:i:2:p:84-96
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().