HAC robust trend comparisons among climate series with possible level shifts
Ross McKitrick and
Timothy Vogelsang
Environmetrics, 2014, vol. 25, issue 7, 528-547
Abstract:
Comparisons of trends across climatic data sets are complicated by the presence of serial correlation and possible step‐changes in the mean. We build on heteroskedasticity and autocorrelation robust methods, specifically the Vogelsang–Franses (VF) nonparametric testing approach, to allow for a step‐change in the mean (level shift) at a known or unknown date. The VF method provides a powerful multivariate trend estimator robust to unknown serial correlation up to but not including unit roots. We show that the critical values change when the level shift occurs at a known or unknown date. We derive an asymptotic approximation that can be used to simulate critical values, and we outline a simple bootstrap procedure that generates valid critical values and p‐values. Our application builds on the literature comparing simulated and observed trends in the tropical lower troposphere and mid‐troposphere since 1958. The method identifies a shift in observations around 1977, coinciding with the Pacific Climate Shift. Allowing for a level shift causes apparently significant observed trends to become statistically insignificant. Model overestimation of warming is significant whether or not we account for a level shift, although null rejections are much stronger when the level shift is included. © 2014 The Authors. Environmetrics published by John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:25:y:2014:i:7:p:528-547
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().