EconPapers    
Economics at your fingertips  
 

Robust bivariate error detection in skewed data with application to historical radiosonde winds

Ying Sun, Amanda S. Hering and Joshua M. Browning

Environmetrics, 2017, vol. 28, issue 3

Abstract: The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy‐tailed, so we develop two methods for outlier detection based on the bivariate skew‐t (BST) distribution, using either distance‐based or contour‐based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/env.2431

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:28:y:2017:i:3:n:e2431

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:28:y:2017:i:3:n:e2431