Modeling joint abundance of multiple species using Dirichlet process mixtures
Devin S. Johnson and
Elizabeth H. Sinclair
Environmetrics, 2017, vol. 28, issue 3
Abstract:
We present a method for modeling the distributions of multiple species simultaneously using Dirichlet process random effects to cluster species into guilds. Guilds are ecological groups of species that behave or react similarly to some environmental conditions. By modeling latent guild structure, we capture the cross‐correlations in abundance or occurrence of species over surveys. In addition, ecological information about the community structure is obtained as a by‐product of the model. By clustering species into similar functional groups, prediction uncertainty of community structure at additional sites is reduced over treating each species separately. The proposed model also presents an improvement over previously proposed joint species distribution models by reducing the number of parameters necessary to capture interspecies correlations and eliminating the need to have a priori information on the number of groups or a distance metric over species traits. The method is illustrated with a small simulation demonstration, as well as an analysis of a mesopelagic fish survey from the eastern Bering Sea near Alaska. The simulation data analysis shows that guild membership can be extracted as the differences between groups become larger and if guild differences are small, the model naturally collapses all the species into a small number of guilds, which increases predictive efficiency by reducing the number of parameters to that which is supported by the data.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/env.2440
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:28:y:2017:i:3:n:e2440
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().