EconPapers    
Economics at your fingertips  
 

Fractional Gaussian noise: Prior specification and model comparison

Sigrunn Holbek Sørbye and Håvard Rue

Environmetrics, 2018, vol. 29, issue 5-6

Abstract: Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ of a first‐order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ. Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/env.2457

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:29:y:2018:i:5-6:n:e2457

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:29:y:2018:i:5-6:n:e2457