Trend assessment for daily snow depths with changepoint considerations
J. Lee,
R. Lund,
J. Woody and
Y. Xu
Environmetrics, 2020, vol. 31, issue 1
Abstract:
This paper develops methods to estimate a long‐term trend in a daily snow depth record. The methods use a storage equation model for the daily snow depths that allows for seasonality, support set features (snow depths cannot be negative), correlation, and mean level shift changepoint features. Changepoints can occur in snow processes whenever observing stations move or station instrumentation is changed; they are critical features to consider when estimating a long‐term trend. A likelihood objective function is developed for the storage model and is used to estimate model parameters. Genetic algorithms are used to optimize a minimum descriptive length model selection criterion that estimates the changepoint numbers and locations. The methods are applied in the analysis of a daily series recorded near Warm Lake, Idaho, from 1948 to 2009.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2580
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:1:n:e2580
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().