A multivariate spatial skew‐t process for joint modeling of extreme precipitation indexes
Arnab Hazra,
Brian J. Reich and
Ana‐Maria Staicu
Environmetrics, 2020, vol. 31, issue 3
Abstract:
To study trends in extreme precipitation across the United States over the years 1951–2017, we analyze 10 climate indexes that represent extreme precipitation, such as annual maximum of daily precipitation and annual maximum of consecutive five‐day average precipitation. We consider the gridded data produced by the CLIMDEX project (http://www.climdex.org/gewocs.html), constructed using daily precipitation data. These indexes exhibit spatial and mutual dependence. In this paper, we propose a multivariate spatial skew‐t process for joint modeling of extreme precipitation indexes and discuss its theoretical properties. The model framework allows Bayesian inference while maintaining a computational time that is competitive with common multivariate geostatistical approaches. In a numerical study, we find that the proposed model outperforms several simpler alternatives in terms of various model selection criteria. We apply the proposed model to estimate the average decadal change in the extreme precipitation indexes throughout the United States and find several significant local changes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1002/env.2602
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:3:n:e2602
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().