Nonlinear reaction–diffusion process models improve inference for population dynamics
Xinyi Lu,
Perry J. Williams,
Mevin B. Hooten,
James A. Powell,
Jamie N. Womble and
Michael R. Bower
Environmetrics, 2020, vol. 31, issue 3
Abstract:
Partial differential equations (PDEs) are a useful tool for modeling spatiotemporal dynamics of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion equation and logistic growth to characterize colonization processes of a population that establishes long‐term equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple data sources collected at different spatial scales. We highlighted the advantages of using a logistic reaction component instead of a Malthusian component when population growth demonstrates asymptotic behavior. As a case study, we demonstrated that our model improves spatiotemporal abundance forecasts of sea otters in Glacier Bay, Alaska. Furthermore, we predicted spatially varying local equilibrium abundances as a result of environmentally driven diffusion and density‐regulated growth. Integrating equilibrium abundances over the study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay, Alaska.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2604
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:3:n:e2604
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().