Ensemble forecasting of the Zika space‐time spread with topological data analysis
Marwah Soliman,
Vyacheslav Lyubchich and
Yulia R. Gel
Environmetrics, 2020, vol. 31, issue 7
Abstract:
As per the records of the World Health Organization, the first formally reported incidence of Zika virus occurred in Brazil in May 2015. The disease then rapidly spread to other countries in Americas and East Asia, affecting more than 1,000,000 people. Zika virus is primarily transmitted through bites of infected mosquitoes of the species Aedes (Aedes aegypti and Aedes albopictus). The abundance of mosquitoes and, as a result, the prevalence of Zika virus infections are common in areas which have high precipitation, high temperature, and high population density. Nonlinear spatio‐temporal dependency of such data and lack of historical public health records make prediction of the virus spread particularly challenging. In this article, we enhance Zika forecasting by introducing the concepts of topological data analysis and, specifically, persistent homology of atmospheric variables, into the virus spread modeling. The topological summaries allow for capturing higher order dependencies among atmospheric variables that otherwise might be unassessable via conventional spatio‐temporal modeling approaches based on geographical proximity assessed via Euclidean distance. We introduce a new concept of cumulative Betti numbers and then integrate the cumulative Betti numbers as topological descriptors into three predictive machine learning models: random forest, generalized boosted regression, and deep neural network. Furthermore, to better quantify for various sources of uncertainties, we combine the resulting individual model forecasts into an ensemble of the Zika spread predictions using Bayesian model averaging. The proposed methodology is illustrated in application to forecasting of the Zika space‐time spread in Brazil in the year 2018.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2629
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:7:n:e2629
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().