A spatiotemporal model for multivariate occupancy data
Staci A. Hepler and
Robert J. Erhardt
Environmetrics, 2021, vol. 32, issue 2
Abstract:
We present a multivariate occupancy model to simultaneously model the presence/absence of multiple species, and demonstrate its use with a goal of estimating parameters related to occupancy. The proposed model accounts for both spatial and temporal dependence within each species, as well as dependence across all species. These dependencies are addressed through random effects, defined so there is no confounding with estimating occupancy covariate effects. Data augmentation and specific choices for the random effects permit all Gibbs updates in the Markov chain Monte Carlo algorithm, making the model computationally efficient and scalable with the number of species and size of spatial domain. A simulation study shows that the model outperforms single‐species spatiotemporal occupancy models with regard to estimating occupancy parameters. We demonstrate the model with a three species camera trap study on Thomson's gazelle, wildebeest, and zebra in the Serengeti National Park of Tanzania, Africa.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2657
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:32:y:2021:i:2:n:e2657
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().