Spatial deformation for nonstationary extremal dependence
Jordan Richards and
Jennifer L. Wadsworth
Environmetrics, 2021, vol. 32, issue 5
Abstract:
Modeling the extremal dependence structure of spatial data is considerably easier if that structure is stationary. However, for data observed over large or complicated domains, nonstationarity will often prevail. Current methods for modeling nonstationarity in extremal dependence rely on models that are either computationally difficult to fit or require prior knowledge of covariates. Sampson and Guttorp (1992) proposed a simple technique for handling nonstationarity in spatial dependence by smoothly mapping the sampling locations of the process from the original geographical space to a latent space where stationarity can be reasonably assumed. We present an extension of this method to a spatial extremes framework by considering least squares minimization of pairwise theoretical and empirical extremal dependence measures. Along with some practical advice on applying these deformations, we provide a detailed simulation study in which we propose three spatial processes with varying degrees of nonstationarity in their extremal and central dependence structures. The methodology is applied to Australian summer temperature extremes and UK precipitation to illustrate its efficacy compared with a naive modeling approach.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2671
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:32:y:2021:i:5:n:e2671
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().