A self‐exciting marked point process model for drought analysis
Xiaoting Li,
Christian Genest and
Jonathan Jalbert
Environmetrics, 2021, vol. 32, issue 8
Abstract:
A self‐exciting marked point process approach is proposed to model clustered low‐flow events. It combines a self‐exciting ground process designed to capture the temporal clustering behavior of extreme values and an extended Generalized Pareto mark distribution for the exceedances over a subasymptotic threshold. The model takes into account the dependence between the magnitude and occurrence time of exceedances and allows for closed‐form inference on tail probabilities and large quantiles. It is used to analyze daily water levels from the Rivière des Mille Îles (Québec, Canada) and to characterize drought patterns in the Montréal area. The model is useful to generate short‐term probability forecasts and to estimate the return period of major droughts. This information on the drought events is critical to water resource professionals in planning, designing, building, and managing more efficient water resource systems to hedge against the water shortage in case of extreme droughts.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2697
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:32:y:2021:i:8:n:e2697
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().