Clustering of bivariate satellite time series: A quantile approach
Victor Muthama Musau,
Carlo Gaetan and
Paolo Girardi
Environmetrics, 2022, vol. 33, issue 7
Abstract:
Clustering has received much attention in statistics and machine learning with the aim of developing statistical models and autonomous algorithms which are capable of acquiring information from raw data in order to perform exploratory analysis. Several techniques have been developed to cluster sampled univariate vectors only considering the average value over the whole period and as such they have not been able to explore fully the underlying distribution as well as other features of the data, especially in presence of structured time series. We propose a model‐based clustering technique that is based on quantile regression permitting us to cluster bivariate time series at different quantile levels. We model the within cluster density using asymmetric Laplace distribution allowing us to take into account asymmetry in the distribution of the data. We evaluate the performance of the proposed technique through a simulation study. The method is then applied to cluster time series observed from Glob‐color satellite data related to trophic status indices with aim of evaluating their temporal dynamics in order to identify homogeneous areas, in terms of trophic status, in the Gulf of Gabes.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2755
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:33:y:2022:i:7:n:e2755
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().