EconPapers    
Economics at your fingertips  
 

An illustration of model agnostic explainability methods applied to environmental data

Christopher K. Wikle, Abhirup Datta, Bhava Vyasa Hari, Edward L. Boone, Indranil Sahoo, Indulekha Kavila, Stefano Castruccio, Susan J. Simmons, Wesley S. Burr and Won Chang

Environmetrics, 2023, vol. 34, issue 1

Abstract: Historically, two primary criticisms statisticians have of machine learning and deep neural models is their lack of uncertainty quantification and the inability to do inference (i.e., to explain what inputs are important). Explainable AI has developed in the last few years as a sub‐discipline of computer science and machine learning to mitigate these concerns (as well as concerns of fairness and transparency in deep modeling). In this article, our focus is on explaining which inputs are important in models for predicting environmental data. In particular, we focus on three general methods for explainability that are model agnostic and thus applicable across a breadth of models without internal explainability: “feature shuffling”, “interpretable local surrogates”, and “occlusion analysis”. We describe particular implementations of each of these and illustrate their use with a variety of models, all applied to the problem of long‐lead forecasting monthly soil moisture in the North American corn belt given sea surface temperature anomalies in the Pacific Ocean.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/env.2772

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:34:y:2023:i:1:n:e2772

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:34:y:2023:i:1:n:e2772