EconPapers    
Economics at your fingertips  
 

The role of data science in environmental digital twins: In praise of the arrows

Gordon S. Blair and Peter A. Henrys

Environmetrics, 2023, vol. 34, issue 2

Abstract: Digital twins are increasingly important in many domains, including for understanding and managing the natural environment. Digital twins of the natural environment are fueled by the unprecedented amounts of environmental data now available from a variety of sources from remote sensing to potentially dense deployment of earth‐based sensors. Because of this, data science techniques inevitably have a crucial role to play in making sense of this complex, highly heterogeneous data. This short article reflects on the role of data science in digital twins of the natural environment, with particular attention on how resultant data models can work alongside the rich legacy of process models that exist in this domain. We seek to unpick the complex two‐way relationship between data and process understanding. By focusing on the interactions, we end up with a template for digital twins that incorporates a rich, highly dynamic learning process with the potential to handle the complexities and emergent behaviors of this important area.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/env.2789

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:34:y:2023:i:2:n:e2789

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:34:y:2023:i:2:n:e2789