Multistage hierarchical capture–recapture models
Mevin B. Hooten,
Michael R. Schwob,
Devin S. Johnson and
Jacob S. Ivan
Environmetrics, 2023, vol. 34, issue 6
Abstract:
Ecologists increasingly rely on Bayesian methods to fit capture–recapture models. Capture–recapture models are used to estimate abundance while accounting for imperfect detectability in individual‐level data. A variety of implementations exist for such models, including integrated likelihood, parameter‐expanded data augmentation, and combinations of those. Capture–recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture–recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two datasets resulting from capture–recapture studies of different species.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2799
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:34:y:2023:i:6:n:e2799
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().