Bayesian geostatistical modeling for discrete‐valued processes
Xiaotian Zheng,
Athanasios Kottas and
Bruno Sansó
Environmetrics, 2023, vol. 34, issue 7
Abstract:
We introduce a flexible and scalable class of Bayesian geostatistical models for discrete data, based on nearest‐neighbor mixture processes (NNMP), referred to as discrete NNMP. To define the joint probability mass function (pmf) over a set of spatial locations, we build from local mixtures of conditional pmfs using a directed graphical model, with a directed acyclic graph that summarizes the nearest neighbor structure. The approach supports direct, flexible modeling for multivariate dependence through specification of general bivariate discrete distributions that define the conditional pmfs. In particular, we develop a modeling and inferential framework for copula‐based NNMPs that can attain flexible dependence structures, motivating the use of bivariate copula families for spatial processes. Moreover, the framework allows for construction of models given a pre‐specified family of marginal distributions that can vary in space, facilitating covariate inclusion. Compared to the traditional class of spatial generalized linear mixed models, where spatial dependence is introduced through a transformation of response means, our process‐based modeling approach provides both computational and inferential advantages. We illustrate the methodology with synthetic data examples and an analysis of North American Breeding Bird Survey data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2805
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:34:y:2023:i:7:n:e2805
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().