A hierarchical Bayesian non‐asymptotic extreme value model for spatial data
Federica Stolf and
Antonio Canale
Environmetrics, 2023, vol. 34, issue 7
Abstract:
Spatial maps of extreme precipitation are crucial in flood prevention. With the aim of producing maps of precipitation return levels, we propose a novel approach to model a collection of spatially distributed time series where the asymptotic assumption, typical of the traditional extreme value theory, is relaxed. We introduce a Bayesian hierarchical model that accounts for the possible underlying variability in the distribution of event magnitudes and occurrences, which are described through latent temporal and spatial processes. Spatial dependence is characterized by geographical covariates and effects not fully described by the covariates are captured by spatial structure in the hierarchies. The performance of the approach is illustrated through simulation studies and an application to daily rainfall extremes across North Carolina (USA). The results show that we significantly reduce the estimation uncertainty with respect to state of the art techniques.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2806
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:34:y:2023:i:7:n:e2806
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().