Fast parameter estimation of generalized extreme value distribution using neural networks
Sweta Rai,
Alexis Hoffman,
Soumendra Lahiri,
Douglas W. Nychka,
Stephan R. Sain and
Soutir Bandyopadhyay
Environmetrics, 2024, vol. 35, issue 3
Abstract:
The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2845
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:35:y:2024:i:3:n:e2845
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().