Missing.... presumed at random: cost‐analysis of incomplete data
Andrew Briggs,
Taane Clark,
Jane Wolstenholme and
Philip Clarke
Health Economics, 2003, vol. 12, issue 5, 377-392
Abstract:
When collecting patient‐level resource use data for statistical analysis, for some patients and in some categories of resource use, the required count will not be observed. Although this problem must arise in most reported economic evaluations containing patient‐level data, it is rare for authors to detail how the problem was overcome. Statistical packages may default to handling missing data through a so‐called ‘complete case analysis’, while some recent cost‐analyses have appeared to favour an ‘available case’ approach. Both of these methods are problematic: complete case analysis is inefficient and is likely to be biased; available case analysis, by employing different numbers of observations for each resource use item, generates severe problems for standard statistical inference. Instead we explore imputation methods for generating ‘replacement’ values for missing data that will permit complete case analysis using the whole data set and we illustrate these methods using two data sets that had incomplete resource use information. Copyright © 2002 John Wiley & Sons, Ltd.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1002/hec.766
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:hlthec:v:12:y:2003:i:5:p:377-392
Access Statistics for this article
Health Economics is currently edited by Alan Maynard, John Hutton and Andrew Jones
More articles in Health Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().