Using simulation‐based inference with panel data in health economics
Paul Contoyannis (),
Andrew Jones and
Roberto Leon‐Gonzalez
Authors registered in the RePEc Author Service: Roberto Leon-Gonzalez
Health Economics, 2004, vol. 13, issue 2, 101-122
Abstract:
Panel datasets provide a rich source of information for health economists, offering the scope to control for individual heterogeneity and to model the dynamics of individual behaviour. However the qualitative or categorical measures of outcome often used in health economics create special problems for estimating econometric models. Allowing a flexible specification of the autocorrelation induced by individual heterogeneity leads to models involving higher order integrals that cannot be handled by conventional numerical methods. The dramatic growth in computing power over recent years has been accompanied by the development of simulation‐based estimators that solve this problem. This review uses binary choice models to show what can be done with conventional methods and how the range of models can be expanded by using simulation methods. Practical applications of the methods are illustrated using data on health from the British Household Panel Survey (BHPS). Copyright © 2003 John Wiley & Sons, Ltd.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/hec.811
Related works:
Working Paper: Using Simulation-based Inference with Panel Data in Health Economics (2002) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:hlthec:v:13:y:2004:i:2:p:101-122
Access Statistics for this article
Health Economics is currently edited by Alan Maynard, John Hutton and Andrew Jones
More articles in Health Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().