Optimal clinical trial design using value of information methods with imperfect implementation
Andrew R. Willan and
Simon Eckermann
Health Economics, 2010, vol. 19, issue 5, 549-561
Abstract:
Traditional sample size calculations for randomized clinical trials are based on the tests of hypotheses and depend on somewhat arbitrarily chosen factors, such as type I and II errors rates and the smallest clinically important difference. In response to this, many authors have proposed the use of methods based on the value of information as an alternative. Previous attempts have assumed perfect implementation, i.e. if current evidence favors the new intervention and no new information is sought or expected, all future patients will receive it. A framework is proposed to allow for this assumption to be relaxed. The profound effect that this can have on the optimal sample size and expected net gain is illustrated on two recent examples. In addition, a model for assessing the value of implementation strategies is proposed and illustrated. Copyright © 2009 John Wiley & Sons, Ltd.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.1002/hec.1493
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:hlthec:v:19:y:2010:i:5:p:549-561
Access Statistics for this article
Health Economics is currently edited by Alan Maynard, John Hutton and Andrew Jones
More articles in Health Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().