Treatment effect estimators for count data models
Takuya Hasebe
Health Economics, 2018, vol. 27, issue 11, 1868-1873
Abstract:
In this paper, we consider a switching regression model with count data outcomes, where the possible outcome differs across two alternate states and individuals endogenously select one of the states. We assume lognormal latent heterogeneity. Building on the switching regression model, we derive estimators of various treatment effects: the average treatment effect, the average treatment effect on the treated, the local average treatment effect, and the marginal treatment effect. We illustrate an application that examines the effects of public insurance on the number of doctor visits using the data employed by previous studies.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/hec.3790
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:hlthec:v:27:y:2018:i:11:p:1868-1873
Access Statistics for this article
Health Economics is currently edited by Alan Maynard, John Hutton and Andrew Jones
More articles in Health Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().