EconPapers    
Economics at your fingertips  
 

Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts

Tasadduq Imam

International Journal of Finance & Economics, 2021, vol. 26, issue 2, 1808-1824

Abstract: Literature on exchange rate forecasting often focuses on varied algorithms' prediction performances and is comparatively silent regarding lag length and model structure (linear or nonlinear) selection. However, model selection and lag lengths are important decision criteria for practitioners when undertaking technical analysis. This research explores the impact of varied lags and different model structures on one‐day‐ahead forecasts of AUD/USD and AUD/EUR exchange rates. Two linear (MLR and SVR with linear kernel) and three nonlinear (SVR with RBF kernel and three gamma values) data mining models are adopted, along with lag lengths of 1, 5 (1 trading week), 10 (2 trading weeks), 20 (1 month) or 120 (6 months) days for both non‐differenced and first‐order differenced time series. The investigation highlights that, irrespective of estimating the magnitude of future exchange rate or the future inter‐day changes in exchange rate, linear models outperform nonlinear models at lower lag levels (1 or 5 or 10 days). At higher lags (20 or 120 days) and for the first‐order differenced time series, nonlinear models show promising outcomes. The MLR model, which emphasises training error reduction, generally outperforms the SVR model, which emphasises generalisability. Nonlinear models may show some prediction biases, while linear models appear to show no specific bias. Thus, for technical analysis upon AUD/USD and AUD/EUR exchange rates, instead of using a large lag of historical prices, a linear model with a lag length of 1 can produce good one‐day‐ahead forecasts.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/ijfe.1879

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:ijfiec:v:26:y:2021:i:2:p:1808-1824

Ordering information: This journal article can be ordered from
http://jws-edcv.wile ... PRINT_ISSN=1076-9307

Access Statistics for this article

International Journal of Finance & Economics is currently edited by Mark P. Taylor, Keith Cuthbertson and Michael P. Dooley

More articles in International Journal of Finance & Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:ijfiec:v:26:y:2021:i:2:p:1808-1824