EconPapers    
Economics at your fingertips  
 

Tail risk connectedness between US industries

Linh H. Nguyen, Linh X. D. Nguyen and Linzhi Tan

International Journal of Finance & Economics, 2021, vol. 26, issue 3, 3624-3650

Abstract: We use the Least Absolute Shrinkage and Selection Operator (LASSO) quantile regression technique to construct and analyse the complete tail risk connectedness network of the whole US industry system. We also investigate the empirical relationship between input–output linkages and the tail risk spillovers among US industries. Our findings identify the tail‐risk drivers, tail‐risk receivers, and tail‐risk distributors among industries and confirm that the actual trade flow between industries is a major driver of their tail risk connectedness.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/ijfe.1979

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:ijfiec:v:26:y:2021:i:3:p:3624-3650

Ordering information: This journal article can be ordered from
http://jws-edcv.wile ... PRINT_ISSN=1076-9307

Access Statistics for this article

International Journal of Finance & Economics is currently edited by Mark P. Taylor, Keith Cuthbertson and Michael P. Dooley

More articles in International Journal of Finance & Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:ijfiec:v:26:y:2021:i:3:p:3624-3650