Good variance, bad variance, and stock return predictability
Yaojie Zhang,
Feng Ma,
Chao Liang and
Yi Zhang
International Journal of Finance & Economics, 2021, vol. 26, issue 3, 4410-4423
Abstract:
In the stock market, past winners and losers usually have different attitudes to variance risk. In light of this, we decompose stock variance into good and bad variances, and further construct a composite signed variance. The recursively estimated coefficient of standard variance is volatile over time, but the ones of good, bad, and signed variances are fairly stable. This suggests the high efficiency of our decomposition approach. We provide convincing evidence that bad variance and composite signed variance can significantly predict future stock returns both in‐ and out‐of‐sample. Furthermore, a mean–variance investor can realize substantial economic gains by using our bad and signed variances relative to the traditional variance predictor and simple mean benchmark. Our decomposition approach can outperform other similar but complex techniques, including threshold regression and Markov regime switching. The results are consistent across multiple robustness tests.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1002/ijfe.2022
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:ijfiec:v:26:y:2021:i:3:p:4410-4423
Ordering information: This journal article can be ordered from
http://jws-edcv.wile ... PRINT_ISSN=1076-9307
Access Statistics for this article
International Journal of Finance & Economics is currently edited by Mark P. Taylor, Keith Cuthbertson and Michael P. Dooley
More articles in International Journal of Finance & Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().