Stock exchange volatility forecasting under market stress with MIDAS regression
Murat Körs and
Mehmet Baha Karan
International Journal of Finance & Economics, 2023, vol. 28, issue 1, 295-306
Abstract:
This paper presents two different approaches of volatility forecasting. One is based on option‐implied volatility (IV), the other involves conducting time series methods using historical volatility. With that purpose, we study eight developed stock markets, offering implied volatility indexes for the 2008 financial crisis. We evaluated the 1 month out‐of‐sample volatility forecast performance of two statistical‐based models, Mixed Data Sampling (MIDAS) and GARCH, and compared the results with option‐implied volatility indexes. Our results suggest that MIDAS produce superior forecast performance compared to GARCH model and IV method. While options are not available for all assets, we believe that MIDAS model can be a sophisticated tool for researchers and analysts to forecast future volatility with its ability to process high‐frequency data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/ijfe.2421
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:ijfiec:v:28:y:2023:i:1:p:295-306
Ordering information: This journal article can be ordered from
http://jws-edcv.wile ... PRINT_ISSN=1076-9307
Access Statistics for this article
International Journal of Finance & Economics is currently edited by Mark P. Taylor, Keith Cuthbertson and Michael P. Dooley
More articles in International Journal of Finance & Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().