EconPapers    
Economics at your fingertips  
 

Workload prediction based on improved error correlation logistic regression algorithm and Cross‐TRCN of spatiotemporal neural network

Xin Wan, Xiang Huang and Fuzhi Wang

International Journal of Network Management, 2025, vol. 35, issue 1

Abstract: In view of the randomness of user network usage behavior in data centers, which leads to a large randomness in power load, and considering that a single randomness processing method is usually difficult to fully characterize the uncertain characteristics of the system, this paper proposes a dual fusion prediction analysis model based on an improved error correlation logic regression algorithm and a novel spatiotemporal neural network structure called Cross‐TRCN. Two weight coefficients λ1 and λ2 are introduced to fuse the prediction results with different long‐term sequence prediction performance, thereby further eliminating the influence of random errors. The results show that it is feasible to predict the workload of data centers based on the improved error correlation logic regression algorithm and the innovative spatiotemporal neural network structure Cross‐TRCN.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/nem.2272

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:intnem:v:35:y:2025:i:1:n:e2272

Access Statistics for this article

More articles in International Journal of Network Management from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:intnem:v:35:y:2025:i:1:n:e2272