Artificial neural networks with feature transformation based on domain knowledge for the prediction of stock index futures
Kyoung‐Jae Kim
Intelligent Systems in Accounting, Finance and Management, 2004, vol. 12, issue 3, 167-176
Abstract:
A feature transformation method based on domain knowledge for artificial neural networks (ANNs) is proposed. The method of feature transformation based on domain knowledge converts continuous values into discrete values in accordance with the knowledge of experts in specific application domains. This approach effectively filters data, trains the classifier, and extracts the rules from the classifier. In addition, it reduces the dimensionality of the feature space, which not only decreases the cost and time in the operation but also enhances the generalizability of the classifier. The experimental results of the proposed approach will be compared and tested statistically with the results of the linear transformation method. The results show that the method of feature transformation based on domain knowledge outperforms the linear transformation in modelling of ANNs. Copyright © 2004 John Wiley & Sons, Ltd.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/isaf.252
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:12:y:2004:i:3:p:167-176
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().