EconPapers    
Economics at your fingertips  
 

Modelling small‐business credit scoring by using logistic regression, neural networks and decision trees

Mirta Bensic, Natasa Sarlija and Marijana Zekic‐Susac

Intelligent Systems in Accounting, Finance and Management, 2005, vol. 13, issue 3, 133-150

Abstract: Previous research on credit scoring that used statistical and intelligent methods was mostly focused on commercial and consumer lending. The main purpose of this paper is to extract important features for credit scoring in small‐business lending on a dataset with specific transitional economic conditions using a relatively small dataset. To do this, we compare the accuracy of the best models extracted by different methodologies, such as logistic regression, neural networks (NNs), and CART decision trees. Four different NN algorithms are tested, including backpropagation, radial basis function network, probabilistic and learning vector quantization, by using the forward nonlinear variable selection strategy. Although the test of differences in proportion and McNemar's test do not show a statistically significant difference in the models tested, the probabilistic NN model produces the highest hit rate and the lowest type I error. According to the measures of association, the best NN model also shows the highest degree of association with the data, and it yields the lowest total relative cost of misclassification for all scenarios examined. The best model extracts a set of important features for small‐business credit scoring for the observed sample, emphasizing credit programme characteristics, as well as entrepreneur's personal and business characteristics as the most important ones. Copyright © 2005 John Wiley & Sons, Ltd.

Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/isaf.261

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:13:y:2005:i:3:p:133-150

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:13:y:2005:i:3:p:133-150