EconPapers    
Economics at your fingertips  
 

Combining heterogeneous classifiers for stock selection

George Albanis and Roy Batchelor

Intelligent Systems in Accounting, Finance and Management, 2007, vol. 15, issue 1‐2, 1-21

Abstract: Combining unbiased forecasts of continuous variables necessarily reduces the forecast error variance below that of a typical individual forecast. However, this does not necessarily hold for forecasts of discrete variables, or where the costs of errors are not directly related to the error variance. This paper investigates the benefits of combining forecasts of outperforming shares, based on one linear and four non‐linear statistical classification techniques, including neural network and recursive partitioning methods. All produce excess returns. Combining by simple ‘majority voting’ improves accuracy and profitability. Much greater gains come from applying the ‘unanimity principle’, whereby a share is not held in the high‐performing portfolio unless all classifiers agree. Copyright © 2007 John Wiley & Sons, Ltd.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1002/isaf.282

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:15:y:2007:i:1-2:p:1-21

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:15:y:2007:i:1-2:p:1-21