Combining heterogeneous classifiers for stock selection
George Albanis and
Roy Batchelor
Intelligent Systems in Accounting, Finance and Management, 2007, vol. 15, issue 1‐2, 1-21
Abstract:
Combining unbiased forecasts of continuous variables necessarily reduces the forecast error variance below that of a typical individual forecast. However, this does not necessarily hold for forecasts of discrete variables, or where the costs of errors are not directly related to the error variance. This paper investigates the benefits of combining forecasts of outperforming shares, based on one linear and four non‐linear statistical classification techniques, including neural network and recursive partitioning methods. All produce excess returns. Combining by simple ‘majority voting’ improves accuracy and profitability. Much greater gains come from applying the ‘unanimity principle’, whereby a share is not held in the high‐performing portfolio unless all classifiers agree. Copyright © 2007 John Wiley & Sons, Ltd.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1002/isaf.282
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:15:y:2007:i:1-2:p:1-21
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().