EconPapers    
Economics at your fingertips  
 

FORECASTING FIRM RISK IN THE EMERGING MARKET OF CHINA WITH SEQUENTIAL OPTIMIZATION OF INFLUENCE FACTORS ON PERFORMANCE OF CASE‐BASED REASONING: AN EMPIRICAL STUDY WITH IMBALANCED SAMPLES

Hui Li, Jun‐Ling Yu, Qing Zhou and Jian‐Hu Cai

Intelligent Systems in Accounting, Finance and Management, 2013, vol. 20, issue 3, 141-161

Abstract: With the development of the Chinese economy, how to make the right decision regarding firms’ risk is becoming more and more important. Case‐based reasoning (CBR) is a potential method that can help forecast business risk status in advance; it is easy to apply and is able to provide good explanations of output. In order to obtain more accurate prediction with CBR, it is essential to investigate factors that influence CBR's performance, and to optimize these factors sequentially for the improvement of CBR's performance in firm risk prediction in emerging markets under a more practicable assumption. We verified that sequential optimization of feature selection, feature weighting, instance selection and the number of nearest neighbours is a possible alternative for improving predictive performance of CBR forecasting under the assumption that the number of failed samples is smaller than that of nonfailed samples. The detailed implementation includes: (1) selecting significant features through a correlation matrix and reducing feature dimensions with factor analysis; (2) using variance contribution ratios of features from factor analysis as feature weights; (3) eliminating noisy cases via a state matrix; and (4) obtaining the optimal number of nearest neighbours from empirical results among different numbers of nearest neighbours. To validate the usefulness of the sequential optimization approach, we applied it to a real‐world case: firm risk prediction with imbalanced data from the emerging market of China. Experimental results show that predictive accuracy of CBR applied in the emerging market was improved with the sequential optimization approach. Insightful thoughts from the results of the sequential optimization of the CBR forecasting system on modelling social tasks are also provided. Copyright © 2013 John Wiley & Sons, Ltd.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/isaf.1342

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:20:y:2013:i:3:p:141-161

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:20:y:2013:i:3:p:141-161