A PSYCHOLOGICAL APPROACH TO MICROFINANCE CREDIT SCORING VIA A CLASSIFICATION AND REGRESSION TREE
Ibtissem Baklouti
Intelligent Systems in Accounting, Finance and Management, 2014, vol. 21, issue 4, 193-208
Abstract:
Microfinance institutions' (MFIs') peculiar lending methodology is characterized by an unchallenged decision‐making predominance from the part of loan officers. Indeed, the latter are in charge of providing a great deal of diagnostic information regarding the entrepreneur's psychological traits likely to help them run a business. This paper constitutes an initial attempt towards exploring the role of borrowers' psychological traits in predicting future default occurrences. It builds on a nonparametric credit scoring model, based on a decision tree, including borrowers' quantitative behavioural traits as input for the final scoring model. On applying data collected from a Tunisian microfinance bank, the major depicted result lies in the fact that borrowers' psychological traits constitute a major information source in predicting their creditworthiness. Actually, the variables deployed have helped reduce the proportion of bad loans classified as good loans by 3.125%, which leads to a decrease in MFIs' losses by 4.8%. In addition, the results indicate that the scoring model based on a classification and regression tree (CART) outperforms the classic techniques. Actually, implementing this CART model might well help MFIs reduce misclassification costs by 6.8% and 13.5% in comparison with the discriminant analysis and logistic regression models respectively. Our conceived model, we consider, would be of great practical implication for microfinance and may provide a means for securing competitive advantage over other MFIs that fail to implement such a methodology. Copyright © 2014 John Wiley & Sons, Ltd.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/isaf.1355
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:21:y:2014:i:4:p:193-208
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().