EconPapers    
Economics at your fingertips  
 

Deep networks for predicting direction of change in foreign exchange rates

Svitlana Galeshchuk and Sumitra Mukherjee

Intelligent Systems in Accounting, Finance and Management, 2017, vol. 24, issue 4, 100-110

Abstract: Trillions of dollars are traded daily on the foreign exchange (forex) market, making it the largest financial market in the world. Accurate forecasting of forex rates is a necessary element in any effective hedging or speculation strategy in the forex market. Time series models and shallow neural networks provide acceptable point estimates for future rates but are poor at predicting the direction of change and, hence, are not very useful for supporting profitable trading strategies. Machine learning classifiers trained on input features crafted based on domain knowledge produce marginally better results. The recent success of deep networks is partially attributable to their ability to learn abstract features from raw data. This motivates us to investigate the ability of deep convolution neural networks to predict the direction of change in forex rates. Exchange rates for the currency pairs EUR/USD, GBP/USD and JPY/USD are used in experiments. Results demonstrate that trained deep networks achieve satisfactory out‐of‐sample prediction accuracy.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1002/isaf.1404

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:24:y:2017:i:4:p:100-110

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:24:y:2017:i:4:p:100-110