Predicting credit card delinquencies: An application of deep neural networks
Ting Sun and
Miklos A. Vasarhelyi
Intelligent Systems in Accounting, Finance and Management, 2018, vol. 25, issue 4, 174-189
Abstract:
The objective of this paper is twofold. First, it develops a prediction system to help the credit card issuer model the credit card delinquency risk. Second, it seeks to explore the potential of deep learning (also called a deep neural network), an emerging artificial intelligence technology, in the credit risk domain. With real‐life credit card data linked to 711,397 credit card holders from a large bank in Brazil, this study develops a deep neural network to evaluate the risk of credit card delinquency based on the client's personal characteristics and the spending behaviours. Compared with machine‐learning algorithms of logistic regression, naive Bayes, traditional artificial neural networks, and decision trees, deep neural networks have a better overall predictive performance with the highest F scores and area under the receiver operating characteristic curve. The successful application of deep learning implies that artificial intelligence has great potential to support and automate credit risk assessment for financial institutions and credit bureaus.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/isaf.1437
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:25:y:2018:i:4:p:174-189
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().