Tehran stock exchange prediction using sentiment analysis of online textual opinions
Arezoo Hatefi Ghahfarrokhi and
Mehrnoush Shamsfard
Intelligent Systems in Accounting, Finance and Management, 2020, vol. 27, issue 1, 22-37
Abstract:
We investigate the impact of social media data in predicting the Tehran Stock Exchange variables for the first time. We consider the closing price and daily return of three different stocks for this investigation. We collected our social media data from Sahamyab.com/stocktwits for about 3 months. To extract information from online comments, we propose a hybrid sentiment analysis approach that combines lexicon‐based and learning‐based methods. Since lexicons that are available for the Persian language are not practical for sentiment analysis in the stock market domain, we built a particular sentiment lexicon for this domain. After designing and calculating daily sentiment indices using the sentiment of the comments, we examine their impact on the baseline models that only use historical market data and propose new predictor models using multi‐regression analysis. In addition to the sentiments, we also examine the comments volume and the users' reliabilities. We conclude that the predictability of various stocks in the Tehran Stock Exchange is different depending on their attributes. Moreover, we indicate that only comments volume could be useful for predicting the closing price, and both the volume and the sentiment of the comments could be useful for predicting the daily return. We demonstrate that users' trust coefficients have different behaviours toward the three stocks.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/isaf.1465
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:27:y:2020:i:1:p:22-37
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().