EconPapers    
Economics at your fingertips  
 

Particle swarm optimization approach to portfolio construction

Ren‐Raw Chen, Wiliam Kaihua Huang and Shih‐Kuo Yeh

Intelligent Systems in Accounting, Finance and Management, 2021, vol. 28, issue 3, 182-194

Abstract: Particle swarm optimization (PSO) is an artificial intelligence technique that can be used to find approximate solutions to extremely difficult or impossible numeric optimization problems. Recently, PSO algorithms have been widely used in solving complex financial optimization problems. This paper presents a PSO approach to solve a portfolio construction problem, since this methodology is a population‐based heuristic algorithm that is suitable for solving high‐dimensional constrained optimization problems. The computational results show that PSO algorithms have advantages in optimizing the Sortino ratio, especially in speed, when the size of the portfolio is large.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/isaf.1498

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:28:y:2021:i:3:p:182-194

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:28:y:2021:i:3:p:182-194