Particle swarm optimization approach to portfolio construction
Ren‐Raw Chen,
Wiliam Kaihua Huang and
Shih‐Kuo Yeh
Intelligent Systems in Accounting, Finance and Management, 2021, vol. 28, issue 3, 182-194
Abstract:
Particle swarm optimization (PSO) is an artificial intelligence technique that can be used to find approximate solutions to extremely difficult or impossible numeric optimization problems. Recently, PSO algorithms have been widely used in solving complex financial optimization problems. This paper presents a PSO approach to solve a portfolio construction problem, since this methodology is a population‐based heuristic algorithm that is suitable for solving high‐dimensional constrained optimization problems. The computational results show that PSO algorithms have advantages in optimizing the Sortino ratio, especially in speed, when the size of the portfolio is large.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/isaf.1498
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:28:y:2021:i:3:p:182-194
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().